Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles.

نویسندگان

  • Amelie Heuer-Jungemann
  • Robert Kirkwood
  • Afaf H El-Sagheer
  • Tom Brown
  • Antonios G Kanaras
چکیده

We demonstrate a new method to program the ligation of single stranded DNA-modified gold nanoparticles using copper-free click chemistry. Gold nanoparticles functionalized with a discrete number of 3'-azide or 5'-alkyne modified oligonucleotides, can be brought together via a splint strand and covalently 'clicked', in a simple one-pot reaction. This new approach to the assembly of gold nanoparticles is inherently advantageous in comparison to the traditional enzymatic ligation. The chemical ligation is specific and takes place at room temperature by simply mixing the particles without the need for special enzymatic conditions. The yield of 'clicked' nanoparticles can be as high as 92%. The ease of the copper-free, 'click-ligation' method allows for its universal applicability and opens up new avenues in programmed nanoparticle organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monovalent maleimide functionalization of gold nanoparticles via copper-free click chemistry.

A single maleimide was installed onto the self-assembled monolayer of gold nanoparticles by copper-free click chemistry. Simple covalent biofunctionalisation is demonstrated by coupling fibroblast growth factor 2 and an oligosaccharide in a 1 : 1 stoichiometry by thiol-Michael addition.

متن کامل

Nucleotidyl transferase assisted DNA labeling with different click chemistries.

Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using e...

متن کامل

High performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles

DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...

متن کامل

Immobilized Palladium-pyridine Complex on γ-Fe2O3 Magnetic Nanoparticles as a New Magnetically Recyclable Heterogeneous Catalyst for Heck, Suzuki and Copper-free Sonogashira Reactions

A new immobilized palladium-pyridine complex on γ-Fe2O3 magnetic nanoparticles was synthesized and characterized by SEM, TEM, TGA, ICP, XPS, XRD, FT-IR and CHN analysis. The catalytic activity of synthesized catalyst has been investigated in Heck, Suzuki and Sonogashira coupling reactions using a series of aryl halides. The catalyst was easily isolated from the reaction mixture by an external m...

متن کامل

Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines

DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 16  شماره 

صفحات  -

تاریخ انتشار 2013